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Bardet-Biedl syndrome (BBS) is a genetically heterogeneous, pleiotropic human disorder characterized by obesity,
retinopathy, polydactyly, renal and cardiac malformations, learning disabilities, and hypogenitalism. Eight BBS loci
have been mapped, and seven genes have been identified. BBS3 was previously mapped to chromosome 3 by linkage
analysis in a large Israeli Bedouin kindred. The rarity of other families mapping to the BBS3 locus has made it
difficult to narrow the disease interval sufficiently to identify the gene by positional cloning. We hypothesized that
the genomes of model organisms that contained the orthologues to known BBS genes would also likely contain a
BBS3 orthologue. Therefore, comparative genomic analysis was performed to prioritize BBS candidate genes for
mutation screening. Known BBS proteins were compared with the translated genomes of model organisms to
identify a subset of organisms in which these proteins were conserved. By including multiple organisms that have
relatively small genome sizes in the analysis, the number of candidate genes was reduced, and a few genes mapping
to the BBS3 interval emerged as the best candidates for this disorder. One of these genes, ADP-ribosylation factor-
like 6 (ARL6), contains a homozygous stop mutation that segregates completely with the disease in the Bedouin
kindred originally used to map the BBS3 locus, identifying this gene as the BBS3 gene. These data illustrate the
power of comparative genomic analysis for the study of human disease and identifies a novel BBS gene.

Introduction

Bardet-Biedl syndrome (BBS [MIM 209900]) is a pleio-
tropic autosomal recessive disorder characterized by
obesity, pigmentary retinopathy, polydactyly, renal ab-
normalities, learning disabilities, and hypogenitalism
(Bardet 1920; Biedl 1922; Green et al. 1989). The dis-
order is also associated with an increased susceptibility
to diabetes mellitus, hypertension, and congenital heart
disease (Harnett et al. 1988; Green et al. 1989; Elbedour
et al. 1994). The disorder shows variable expressivity
within and between families, a finding suggesting genetic
complexity. BBS displays extensive genetic heterogeneity
and a requirement for full penetrance of two mutations
at one locus and a third mutation at a second locus has
been suggested (Katsanis et al. 2001). To date, eight BBS
loci have been mapped, and seven BBS genes have been
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identified. The first three BBS genes to be discovered
(BBS6, BBS2, and BBS4) are not homologous to one
another and were identified using positional cloning
(Katsanis et al. 2000; Slavotinek et al. 2000; Mykytyn
et al. 2001; Nishimura et al. 2001). Subsequently, bioin-
formatics comparisons of protein sequences have aided
in the identification of additional BBS genes. For ex-
ample, the positional cloning of the BBS1 gene was aided
by the finding of limited sequence homology to BBS2
(Mykytyn et al. 2002). BBS7 and BBS8 were identified
by database searches for proteins with partial homology
to BBS2 and BBS4, respectively (Ansley et al. 2003;
Badano et al. 2003). BBS5 was recently identified using
a combination of comparative genomics and positional
cloning (Li et al. 2004).

The BBS3 locus was initially mapped to chromosome
3 in a large, inbred Israeli Bedouin kindred in a study
that showed the utility of using pooled DNA samples
for genetic mapping of human disorders (Sheffield et al.
1994). Genotyping of the Bedouin DNA samples ini-
tially localized the disease interval to an ∼10-cM region.
Few additional BBS3-linked families have been identi-
fied, and this has limited extensive refinement of the
disease locus. The sequencing of the human genome
(Lander et al. 2001; Venter et al. 2001), as well as the
sequencing of other model organisms, has made it pos-
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sible to perform cross-species comparisons of genomes
(comparative genomics). In the present study, we rea-
soned that organisms containing orthologues to the
known BBS genes were likely to also contain ortho-
logues to as-yet-unidentified BBS genes. Comparisons
of the human genome with the genomes of other mo-
del organisms, particularly lower eukaryotic organisms
with relatively fewer genes, were used to prioritize BBS
candidate genes for mutation screening and assisted in
the identification of the BBS3 gene.

Material and Methods

Subjects

Signed informed-consent forms, approved by the In-
stitutional Review Board at the University of Iowa and
collaborating institutions, were obtained from all study
participants on entry into the study. The diagnosis of
BBS in the large Bedouin Arab family was based on the
presence of at least two of the cardinal features of BBS
(obesity, polydactyly, renal anomalies, retinopathy, hy-
pogonadism, and learning disabilities). The diagnosis of
BBS in individuals without a family history of the dis-
order was based on the presence of at least three of the
cardinal features of BBS, most commonly obesity, poly-
dactyly, and retinal degeneration. The clinical features
of BBS in the Bedouin family have been reported else-
where (Kwitek-Black et al. 1993; Sheffield et al. 1994;
Carmi et al. 1995).

Bioinformatic Analysis

Identification and prioritization of BBS candidate
genes in this study used a computational comparative
genomics technique with similarities to previous meth-
ods (Avidor-Reiss et al. 2004; Li et al. 2004). This ap-
proach is briefly described, in general terms, in this sec-
tion, followed by a description of its implementation.
Specific details of the application of this method to the
study of BBS can be found in the “Results” section.

A basic principle of this approach is that specific bi-
ological features are manifest in an evolutionarily con-
served structural and/or functional characteristic shared
among a subset of species. In addition, a subset of species
is also identifiable that explicitly lacks this same char-
acteristic. Together, these two subsets of species serve as
positive and negative filters, respectively. Employing
computational sequence-similarity tools and available
protein and genomic sequences, these filters are applied
to a candidate set of genes to prioritize them for exper-
imental analysis, such as mutation screening. Figure 1
depicts this process, which is outlined as follows:

1. Initial determination of candidate gene set .Gc

2. Selection of positive and negative sets of species:

and .S S� �

3. Determination of thresholds for similarity filters:
and .Th Th� �

4. Computational application of filters and toS S� �

candidate gene set .Gc

a. Similarity analysis of relative to , andG Sc �

retention of candidates exceeding . We re-Th�

fer to this subset as “ ”.Gc�

b. Similarity analysis of relative to , andG Sc� �

rejection of candidates falling below WeTh�

refer to this subset as “ ”.Gc��

5. Application of additional criteria, A, for candidate
gene ranking.

a. Utilization of known or suspected linkage
interval.

i. Intersection of the subset of genes in the
interval, , with and . We referG G Gc,A c� c��

to these subsets as “ ” and “ ”.G Gc�,A c��,A

b. Utilization of available expression informa-
tion.

c. Utilization of other annotations (e.g., Gene
Ontology Consortium [GO] biological pro-
cess, molecular function, cellular component,
etc. [Ashburner et al. 2000]).

The implementation of this process for identification
of BBS3 candidate genes employed BLAST (Altschul et
al. 1990) as the similarity-analysis tool. The thresholds
( and ) were expressed as BLAST e-values. TheseTh Th� �

values were determined based on similarity scores of the
known BBS genes. The test for was implemented asS�

a “less than” comparison with ; the test for S� wasTh�

a “greater than” comparison with . The linkage in-Th�

terval for BBS3 was applied as additional criteria A. The
selection of sets and was based upon the presenceS S� �

or absence of ciliated structures, as further described in
the Results section.

Data Sources

Genomic information was obtained from Ensembl
(Caenorhabditis elegans, Danio rerio, Drosophila me-
lanogaster, and Mus musculus), from the U.S. Depart-
ment of Energy Joint Genome Institute (JGI) (Ciona in-
testinalis and Chlamydomonas reinhardtii), from The
Institute for Genomic Research (TIGR) (Trypanosoma
brucei and T. cruzi), from the Saccharomyces Genome
Database (SGD) (Saccharomyces cerevisiae), from The
Arabidopsis Information Resource (TAIR) (Arabidopsis
thaliana), and from the Broad Institute (Aspergillus ni-
dulans). Predicted Ensembl genes for humans (Release
22.34a) were retrieved for human genomewide analysis.

Genotyping

PCR amplification for the analysis of STRPs was per-
formed using 40 ng genomic DNA in 8.4 ml reactions
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Figure 1 General outline of the candidate ranking process. A list of unfiltered genes ( ) can be prioritized through a set of positive filterGc

species ( ) on the basis of a similarity filter threshold ( ), which yields a subset of genes ( ) found in all positive filter species ( ). TheseS Th G S� � c� �

can be further screened with similarity filter threshold ( ) in a set of negative filter species ( ) to yield a more restricive subset of genesTh S� �

( ). Further filtering continues by intersection (L) with additional criteria (A) to generate ( ). An even more refined set ( ) can beG G Gc�� c�,A c��,A

obtained by intersecting with .G Gc�,A c��

containing 1.25 ml 10# PCR buffer (100 mM Tris-HCl
[pH 8.8], 500 mM KCl, 15 mM MgCl2, 0.01% gelatin
[w/v]), 200 uM each of dATP, dCTP, dGTP and dTTP,
2.5 pmol of each primer, and 0.2 U of Taq polymerase.
Samples were subjected to 35 cycles of 94�C for 30 s;
50, 52, 55, or 57�C (as required) for 30 s; and 72�C for
30 s. Amplification products were electrophoresed on
6% polyacrylamide gels containing 7.7 M urea at 60 W
for ∼2 h. The bands were visualized by silver staining.
Oligonucleotide primers for the STRPs were obtained as
MapPairs (Research Genetics) or were custom designed
and synthesized commercially.

DNA Sequencing and Mutation Screening

PCR products for sequencing were amplified in a 25-
ml reaction volume and were visualized on a 1.2% aga-
rose gel. The corresponding bands were excised and pu-
rified using the QIAquick gel extraction kit (Qiagen).
4.5 ml of purified PCR product was used as template
for sequencing reactions using dye-terminator chemistry
(Applied Biosystems). PCR product sequencing reactions
were precipitated in the presence of glycogen and iso-
propanol. The reactions were analyzed on an ABI 3730
DNA Sequencer. All sequence variants were verified bi-

directionally by direct DNA sequencing and/or by re-
striction enzyme digestion. Primer sequences used to
screen the entire ARL6 gene are available in table A1
(online only).

In some cases, the coding sequence of candidate genes
was screened by SSCP analysis. Amplicons for SSCP
analysis were designed to be ∼200 bp in size. For SSCP,
PCR products were electrophoresed on SSCP gels (7 ml
50% glycerol, 3.5 ml 5# TBE, 8.8 ml 37.5:1 acrylam-
ide/bisacrylamide, and 50.7 ml ddH20) for 3–4 h in
0.5# TBE at room temperature, with the temperature
controlled by a cooling fan. The gels were silver stained
to visualize DNA bands. Abnormal variants were se-
quenced and compared with a control sample (CEPH
sample 1331–01) to detect any changes from that of the
normal sequence.

Results

Genetic Fine Mapping

The BBS3 pedigree from a large Israeli Bedouin kin-
dred has been previously published (Sheffield et al.
1994). DNA samples were obtained from the 13 affected
individuals in this pedigree and from numerous other
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Figure 2 Refinement of genetic localization of the BBS3 candidate interval. The genetic map was obtained from the Marshfield Medical
Clinic Web site, and the physical map distances were obtained from the UCSC Genome Browser on the basis of the July 2003 data release.
Critical recombination events are also illustrated. The patient identification terminology is the same as was published previously (Sheffield et
al. 1994).

individuals in this Bedouin population, including 21 un-
affected siblings and 12 parents (some of whom were
also siblings of affected individuals). To narrow the dis-
ease interval, genotyping with STRPs was performed
across the linked interval, focusing on two affected in-
dividuals who were not homozygous for all markers
across the genetic interval initially reported (Sheffield et
al. 1994). Mapping of the homozygous interval in these
two individuals allowed us to refine the disease interval
to ∼5.3 cM (fig. 2). This interval proved to be a region
of lower-than-average recombination, in part because
the 16.9-Mb region between the flanking markers
(D3S1595 and D3S3655) crosses the centromere. Anal-
ysis of the human genome (UCSC Genome Browser)
across the BBS3 interval revealed a minimum of 67
UniGene clusters. In an attempt to further narrow the
BBS3 interval, we genotyped 54 small kindreds, includ-
ing many that had a single affected individual, looking
for families consistent with linkage to the BBS3 locus
and/or for isolated affected individuals that were ho-
mozygous across this interval. Only one small pedigree
was identified that was consistent with linkage on the
basis of a single homozygous affected individual, indi-
cating that BBS3 is a rare cause of BBS.

Comparative Genomic Analysis to Identify BBS
Candidate Genes

The existence of several known BBS genes, previously
identified by positional cloning, provided the opportu-
nity to use bioinformatics methods to identify additional
BBS genes. Since prior studies of BBS4 (Kim et al. 2004),
BBS8 (Ansley et al. 2003), and the BBS4 mouse model

(Mykytyn et al. 2004) implicated the involvement of BBS
proteins in ciliary function, we included within the set
of genomes to be analyzed, the genomes of well-studied
eukaryotic ciliated organisms ( ), as well as some non-S�

ciliated organisms ( ) for which complete genome se-S�

quence was available.
The value of was determined on the basis ofTh�

BLAST analysis of five known BBS proteins (BBS1,
BBS2, BBS4, BBS7, and BBS8) against available genomic
sequence from ciliated organisms, including nematode,
zebrafish, fruit fly, laboratory mouse, sea squirt, bifla-
gellated green algae, and flagellated parasites. Putative
BBS orthologues were identified for many but not all
organisms at a significance level of � . The ge-�35Th e�

nome of M. musculus and D. rerio contain BBS ortho-
logues with highly significant expected values, sequence
percent identity (163%), and similarity (175%) to five
known BBS proteins. The genome of D. melanogaster
contains only orthologues to BBS1, BBS4, and BBS8,
whereas the remaining ciliated organisms (T. brucei, T.
cruzi, C. reinhardtii, and C. intestinalis) showed signif-
icant expected values (� ), percent identity (120%),�40e
and similarity (140%) to BBS1, BBS2, BBS4, BBS7, and
BBS8. We reasoned that the smaller genomes (compared
with those of humans) of organisms such as T. brucei,
T. cruzi, C. reinhardtii, C. intestinalis, and C. elegans,
which contain orthologues to BBS genes, should be en-
riched for additional BBS genes. To further enhance for
cilia-related genes, multiple ciliated organisms (T. brucei,
T. cruzi, C. reinhardtii, and C. intestinalis) were chosen
for comparison with the human genome, to define a set
of BBS candidate genes. Similarly, the genomes of S.
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Table 1

Ensembl Genes from Each Stage of the Comparative
Genomics Approach

All Ensembl
Genes

FilterS�

Only
andS S� �

Filters

All chromosomes 21,184 (Gc) 1,588 (Gc�) 114 (Gc��)
BBS3 interval 62 (Gc,A) 4 (Gc�,A) 0 (Gc��,A)

NOTE.—Each cell contains the intersection of the sets that
define the row and the column.

cerevisiae and A. thaliana, which do not contain putative
orthologues of the known BBS genes ( organisms),S�

were selected to aid in exclusion of genes as potential
BBS candidates. A significance level of � was�35Th e�

selected on the basis of these comparisons.
The central step in the bioinformatics methods was

the application of the positive and negative filter sets
( and ; and ). We performed a BLAST anal-S S Th Th� � � �

ysis of the set of 21,184 candidate genes ( ), as iden-Gc

tified in Ensembl (Curwen et al. 2004) against the ge-
nomes of C. intestinalis, C. reinhardtii, T. brucei, and T.
cruzi. These comparisons resulted in the identification
of 1,588 genes ( ) in common between the knownGc�

human genome ( ) and these model organisms ( ), asG Sc �

shown in table 1. To remove genes that were less likely
to be BBS genes, we compared this set of 1,588 genes
against the genomes of S. cerevisiae and A. thalianaS�

(two genomes that do not contain orthologues to the
known BBS genes). This analysis resulted in a refined
set of 114 BBS candidates ( ) that were present inGc��

the genomes of C. intestinalis, C. reinhardtii, T. bru-S�

cei, and T. cruzi but were absent in the genomes ofS�

S. cerevisiae and A. thaliana. None of these 114 genes
mapped to the BBS3 interval, as shown in table 1. How-
ever, two genes (Hs.388438 and Hs.446399) mapped to
the BBS5 locus on chromosome 2q31. During the course
of this study, the BBS5 gene was identified by others
using a similar comparative genomic strategy (Li et al.
2004). It is of note that the BBS5 gene was one of the
two BBS5 candidate genes (Hs.446399) identified in our
study. The complete list of 1,588 genes in the setGc�

and the 114 genes in the set are available at theGc��

authors’ Web site.
In addition to the whole human genome analysis de-

scribed above, we performed an intersection of the 1,588
candidates with the 62 Ensembl genes containedGc�

within the human BBS3-linked interval. This analysis
identified four BBS3 candidate genes ( ), as shownGc�,A

in table 1. We then prioritized the four genes forGc�,A

mutation analysis using two criteria: (1) a broad tissue
pattern of expression similar to that of known BBS
genes, on the basis of representation in dbEST, and (2)
putative function, on the basis of GO data. On the basis
of these criteria, candidate genes from the BBS3-linked
interval, including a gene known as “ARL6,” were se-
lected for mutation analysis. ARL6 (ADP-ribosylation
factor [ARF]–like 6) is a member of a subgroup of the
ARF family, proteins that regulate diverse cellular func-
tions including regulation of intracellular traffic (Kahn
and Gilman 1984; Price et al. 1988; Sewell and Kahn
1988; Pasqualato et al. 2002).

Mutation Analysis in the Bedouin Family

The coding sequence and splice sites from BBS3
candidate genes identified in the phylogenetic compari-

sons were initially sequenced in DNA amplified from
two affected members of the BBS3-linked kindred.
No nonsynonymous sequence variants were identified
in the coding sequence of Hs.145172, Hs.16986
(FLJ11046), Hs.370688 (TOMM70A), Hs.23294
(MINA), Hs.369885, and Hs.223341. However, se-
quencing of ARL6 revealed a homozygous stop muta-
tion in exon 7 (R122X) resulting in a predicted trun-
cation of the protein from 186 amino acids to 121 amino
acids. This mutation segregates completely with BBS in
the Bedouin kindred in that all 13 affected individuals
were homozygous for the mutation and each obligate
carrier (12 parents of affected individuals) was hetero-
zygous for the mutation. Twenty-one unaffected siblings
of BBS patients either were heterozygous for the mu-
tation or were homozygous for the normal allele (fig.
3). To determine whether R122X is a rare polymor-
phism, we genotyped 100 Arab control individuals (200
chromosomes) from the Middle East and 90 additional
control individuals (180 chromosomes) from diverse eth-
nicities. No R122X alleles were detected in these 380
chromosomes. To exclude the possibility that a short,
functional ARL6 isoform exists that excludes exon 7 (the
exon containing the R122X mutation) as a functional
component, we analyzed the 47 available ARL6 ESTs
in dbEST. All ARL6 isoforms identified in this analysis
include the complete exon 7 sequence.

In addition to the mutation analysis performed in the
BBS3 Bedouin kindred, we performed mutation screen-
ing of 90 unrelated BBS patients, including a single pa-
tient that was shown to be homozygous across the BBS3
genetic interval. No nonsynonymous coding sequences
were identified, consistent with previous genotyping data
that indicate that BBS3 is a rare cause of the disorder.

Discussion

The identification of the BBS3 gene presented challenges,
because of the extensive genetic heterogeneity of BBS,
the paucity of families mapping to the BBS3 locus, and
the diversity of BBS genes. Analysis of the BBS3 genetic
interval in an attempt to find candidate genes, on the
basis of homology to the known BBS genes, failed to
produce attractive candidate genes. Genetic mapping
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Figure 3 BBS3 mutation (R122X) detected in a large Bedouin kindred. A, Sequence from an affected individual from the Bedouin family
and a control sample, showing the homozygous CrT change that results in premature termination at codon 122. B, An example of the TaqI
restriction enzyme digest that was used to confirm the R122X mutation. The mutation results in the abolition of a TaqI site within exon 7.
Following TaqI digestion of a PCR fragment containing exon 7, the wild-type allele is observed as two bands (142 bp and 170 bp), whereas
the uncut mutant allele produces a 312-bp fragment. For the pedigree, the hatched symbols represent BBS carriers, as determined by genetic
analysis; the filled symbol denotes an individual with BBS; and the open symbols are unaffected individuals. The patient-identificationterminology
is the same as was published previously (Sheffield et al. 1994), with the exception of the 0, which denotes a sample that was not previously
available. C, The genomic structure of the ARL6 gene is shown, with the blue shading representing the translated region. The two ARL6
isoforms that are produced by alternative splicing are shown below. The location of the R122X mutation within the ARL6 gene is indicated
in red.

narrowed the disease interval to a region containing at
least 62 genes. To identify and prioritize the best BBS
candidate genes, we used a comparative genomics ap-
proach to select genes shared by organisms harboring
orthologues to known BBS genes. Sequencing of DNA
from BBS patients in the large Bedouin kindred that was
initially used to map the BBS3 locus, revealed that each
affected individual harbored a homozygous stop mu-
tation (R122X) in one of the genes identified in this
manner, ARL6. R122X results in the predicted trunca-
tion of the protein from 186 to 121 residues, including
many highly conserved amino acids (fig. 4). These data
convincingly demonstrate that ARL6 is the BBS3 gene.
The identification of mutations only in the large previ-
ously linked BBS3 Bedouin family is consistent with pre-
vious reports of the rarity of BBS3 as a cause of this

syndrome (Bruford et al. 1997). The reported tissue-
expression pattern of ARL6 (Jacobs et al. 1999) and
analysis of ESTs from dbEST indicate that ARL6 is
widely expressed in human tissues including brain, eye,
heart, and kidney, further supporting this gene as a cause
of BBS.

The computational comparative genomics approach
used in our study is similar to the approach used recently
to identify the BBS5 gene (Li et al. 2004). In that study,
genes that were conserved in the genome from the model
organism C. reinhardii and not in A. thaliana and that
mapped to the BBS5 locus were selected as BBS can-
didate genes. Of note, the BBS5 gene was found within
the comparative genomics set of 114 genes in ourGc�

study. When this set of 114 genes was intersected with
the set of 62 Ensembl genes in the linked BBS3 interval,



Chiang et al.: Identification of BBS3 481

Figure 4 Multiple alignment of ARL6 (HS_NP_115522) and the corresponding best BLAST hit in 11 other model organisms. The mutation
(R122X) is denoted by an arrow. Each sequence is denoted by the first letter of the genus-species name, followed by a GenBank accession
number (whenever possible) or a unique identifier (e.g., “DM_NP_611421” refers to the protein represented by NP_611421 in the genome of
Drosophila melanogaster). Consensus residues are shown in red; conserved residues are shown in blue. Numbers flanking sequences correspond
to the position of the residue within each sequence (excluding gaps). Abbreviations are as follows: HS, Homo sapiens; MM, Mus musculus;
RN, Rattus norvegicus; CI, Ciona intestinalis; DM, Drosophila melanogaster; CE, Caenorhabditis elegans; TB, Trypanosoma brucei; TC,
Trypanosoma cruzi; CR, Chlamydomonas reinhardtii; AN, Aspergillus nidulans; AT, Arabidopsis thaliana; and SC, Saccharomyces cerevisiae.

no genes were identified. It is possible that different
choices for and for would have resulted in aS Th� �

nonempty set of candidates in the set . However,Gc��,A

one of the strengths of this method is the ability to
employ additional criteria, such as a known linked in-
terval. As can be seen in table 1, both dimensions of
filtering allow a distillation of candidates to a number,

which then may be individually examined for function-
al annotation and/or direct mutation screening. Since
other BBS genes likely exist, the comparative genomics
approach should prove useful in identifying additional
genes causing rare cases of BBS.

Little is known about the pathophysiology of BBS
and the specific functions of BBS proteins. BBS6 is



482 Am. J. Hum. Genet. 75:475–484, 2004

caused by mutations in the MKKS gene (Katsanis et
al. 2000; Slavotinek et al. 2000), mutations that also
cause McKusick-Kaufman syndrome (hydrometrocol-
pos, post-axial polydactyly, and congenital heart de-
fects) (Robinow and Shaw 1979; Stone et al. 2000).
MKKS has sequence homology to the a subunit of the
Thermoplasma acidophilum thermosome (Stone et al.
2000), a prokaryotic chaperonin complex with similar-
ity to a eukaryotic chaperonin called “tailless complex
polypeptide ring complex” (TRiC) (Frydman et al.
1992). However, the other known BBS proteins have
no significant similarity to chaperonins or other proteins
of known function. BBS4 and BBS8 contain tetratri-
copeptide repeat (TPR) domains, indicating that they
may interact with other proteins. Recently, it was hy-
pothesized that BBS8 and other BBS proteins are in-
volved in cilia function, on the basis of localization of
BBS8 to the basal body of ciliated cells (Ansley et al.
2003). In addition, BBS4 was recently shown to localize
to the centriolar satellites of centrosomes and basal bod-
ies of primary cilia where it interacts with components
of the dynein transport machinery (Kim et al. 2004).
We recently demonstrated that BBS4 knockout mice
have features of the human disorder and that absence
of this protein leads to failure of spermatozoa flagellar
formation but not to the failure of the formation of cilia
in general (Mykytyn et al. 2004). Furthermore, we dem-
onstrated that absence of this protein did not disrupt
initial formation of photoreceptor outer segments, in-
cluding the connecting cilia; rather, photoreceptors un-
derwent cell death due to apoptosis. Collectively, these
results support the hypothesis that BBS proteins are in-
volved in ciliary function and/or intracellular transport.

The comparative genomic analysis of the known BBS
genes performed to identify the BBS3 gene provides
some insight into the function of BBS genes. A striking
finding is that, in general, ciliated organisms have or-
thologous sequences to BBS proteins, whereas nonci-
liated organisms do not (Mykytyn et al. 2004). For ex-
ample, even lower, single-cell ciliated organisms—such
as T. brucei, T. cruzi, and C. reinhardtii—have homol-
ogous sequences to the known BBS proteins. The cili-
ated organism C. intestinalis also has homologous se-
quences to BBS proteins. In contrast, organisms without
cilia (e.g., S. cerevisiae, S. pombe, A. nidulans, and A.
thaliana) do not have sequences that are homologous
to BBS proteins. These data support a role for BBS genes
in cilia function or some other specialized function com-
mon to ciliated organisms. This hypothesis is supported
by two previous studies, in which comparative genomics
were used to identify genes found in ciliated organisms
(Avidor-Reiss et al. 2004; Li et al. 2004).

The finding that some organisms do not have ortho-
logues to BBS genes indicates that the BBS genes do not
play a role in a process required of all eukaryotic cells—

or, at a minimum, that BBS genes add specificity to a
general cellular process found in all eukaryotic organ-
isms. This finding is consistent with the BBS genes play-
ing a role in cilial function and/or a role in intracellular
transport.

Although the precise function of ARL6 is not known
(Ingley et al. 1999; Jacobs et al. 1999; Pasqualato et al.
2002), the identification of this gene as the BBS3 gene
supports a general role for BBS genes in intracellular
transport. The ADP-ribosylation factor group of pro-
teins is part of the Ras superfamily, which is subdivided
into ARF and ARF-like (ARL) subgroups (Pasqualato
et al. 2002). ARF proteins were initially identified be-
cause of their ability to stimulate ADP-ribosyltransfer-
ase activity of cholera toxin (Kahn and Gilman 1984;
Price et al. 1988; Sewell and Kahn 1988; Pasqualato et
al. 2002). The ARL proteins were identified on the basis
of their similarity to ARF proteins. These proteins are
thought to have diverse roles, including regulation of
intracellular vesicle and membrane trafficking and mi-
crotubule assembly (Bhamidipati et al. 2000; Pasqual-
ato et al. 2002). Further elucidation of the precise func-
tion of ARL6 and the other BBS proteins, as well as
their interactions, should provide important clues to the
pathophysiology of diverse phenotypes, including obe-
sity, diabetes, and retinal degeneration.
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